Identification of dicalcium phosphate dihydrate deposited during osteoblast mineralization in vitro.

نویسندگان

  • Zheng-Lai Zhang
  • Xiao-Rong Chen
  • Sha Bian
  • Jian Huang
  • Tian-Lan Zhang
  • Kui Wang
چکیده

The hydroxyapatite (HAP) with variable chemical substitutions has been considered as the major component in the mineralized part of bones. Various metastable crystalline phases have been suggested as transitory precursors of HAP in bone, but there are no consensuses as to the nature of these phases and their temporal evolution. In the present study, we cultured rat calvarial osteoblasts with ascorbate and β-glycerophosphate to explore which calcium phosphate precursor phases comprise the initial mineral in the process of osteoblast mineralization in vitro. At the indicated time points, the deposited calcium phosphate was analyzed after removing organic substances from the extracellular matrix with hydrazine. The features comparable to dicalcium phosphate dihydrate (DCPD) and octacalcium phosphate (OCP), in addition to HAP, were detected in the mineral phases by high resolution transmission electron microscopy. And there was a trend of conversion from DCPD- and OCP-like phases to HAP in the course of mineralization, as indicated by Fourier-transform infrared microspectroscopy, energy-dispersive X-ray spectroscopy and synchrotron X-ray powder diffraction analyses. Besides, biochemical assay showed a progressive decrease in the ratio of mineral-associated proteins to calcium with time. These findings suggest that DCPD- and OCP-like phases are likely to occur on the course of osteoblast mineralization, and the mineral-associated proteins might be involved in modulating the mineral phase transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method.

Brushite (dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) are of considerable interest in bone augmentation owing to their metastable nature in physiological fluids. The anhydrous form of brushite, namely monetite, has a finer microstructure with higher surface area, strength and bioresorbability, which does not transform to the poorly resorbable hydroxyapatite, thus...

متن کامل

Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations

New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs wer...

متن کامل

Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate.

During calcification of bone, large amounts of phosphate (P(i)) must be transported from the circulation to the osteoid. Likely candidates for osteoblast P(i) transport are the type II sodium-phosphate cotransporters NaPi-IIa and NaPi-IIb that facilitate transcellular P(i) flux in kidney and intestine, respectively. We have therefore determined the 'cotransporters' expression in osteoblast-like...

متن کامل

Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization.

The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (P(i)) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitr...

متن کامل

Chemical Modification of Hydroxyapatite Ceramic Surface by Calcium Phosphate Coatings and In- Vitro Osteoblast Response

The surfaces of hydoxyapatite ceramics were modified by the precipitation of octacalcium phosphate coating from aqueous solution and the biomimetic method synthesized nanohydroxyapatite coatings. Both coatings were deposited as continuous and uniform layers. It was demonstrated that the octacalcium phosphate coating was inappropriate for in-vitro osteoblast proliferation despite of good initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of inorganic biochemistry

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2014